Extensions 1→N→G→Q→1 with N=C22 and Q=C42

Direct product G=N×Q with N=C22 and Q=C42
dρLabelID
C22×C4264C2^2xC4^264,192

Semidirect products G=N:Q with N=C22 and Q=C42
extensionφ:Q→Aut NdρLabelID
C22⋊C42 = C4×C22⋊C4φ: C42/C2×C4C2 ⊆ Aut C2232C2^2:C4^264,58

Non-split extensions G=N.Q with N=C22 and Q=C42
extensionφ:Q→Aut NdρLabelID
C22.1C42 = C23.9D4φ: C42/C2×C4C2 ⊆ Aut C2216C2^2.1C4^264,23
C22.2C42 = C22.C42φ: C42/C2×C4C2 ⊆ Aut C2232C2^2.2C4^264,24
C22.3C42 = M4(2)⋊4C4φ: C42/C2×C4C2 ⊆ Aut C22164C2^2.3C4^264,25
C22.4C42 = C4×M4(2)φ: C42/C2×C4C2 ⊆ Aut C2232C2^2.4C4^264,85
C22.5C42 = C82M4(2)φ: C42/C2×C4C2 ⊆ Aut C2232C2^2.5C4^264,86
C22.6C42 = C8⋊C8central extension (φ=1)64C2^2.6C4^264,3
C22.7C42 = C22.7C42central extension (φ=1)64C2^2.7C4^264,17
C22.8C42 = C2×C2.C42central extension (φ=1)64C2^2.8C4^264,56
C22.9C42 = C2×C8⋊C4central extension (φ=1)64C2^2.9C4^264,84

׿
×
𝔽